Search Courses

Journal SAM 43-3A: Knowledge-based Treatment Planning and Its Potential Role in the Transition Between Treatment Planning Systems

Course Details

CEUs: 2.5

Available Until: 8/31/2019

Non-Member Price: $87.50

Member Price: $50.00

Member PLUS Price: $50.00

Add to My Courses

Once you have exceeded your annual free credit allowance you will be prompted to pay a per-credit fee.

Courses purchased using your credit allowance are non-refundable and need to be completed before their expiration date

View your annual credit allowance here.

Kathryn Masi, M.S.,1 Paul Archer, C.M.D., William Jackson, M.D., Yilun Sun, Ph.D.,
Matthew Schipper, Ph.D., Daniel Hamstra, M.D., and Martha Matuszak, Ph.D.

Department of Radiation Oncology, University of Michigan, 1500 E. Medical Center Dr., Ann Arbor, MI 48109

Abstract

Commissioning a new treatment planning system (TPS) involves many time-consuming tasks. We investigated the role that knowledge-based planning (KBP) can play in aiding a clinic’s transition to a new TPS. Sixty clinically treated prostate/prostate bed intensity-modulated radiation therapy (IMRT) plans were exported from an in-house TPS and were used to create a KBP model in a newly implemented commercial application. To determine the benefit that KBP may have in a TPS transition, the model was tested on 2 groups of patients. Group 1 consisted of the first 10 prostate/prostate bed patients treated in the commercial TPS after the transition from the in-house TPS. Group 2 consisted of 10 patients planned in the commercial TPS after 8 months of clinical use. The KBP-generated plan was compared with the clinically used plan in terms of plan quality (ability to meet planning objectives and overall dose metrics) and planning efficiency (time required to generate clinically acceptable plans). The KBP-generated plans provided a significantly improved target coverage (p = 0.01) compared with the clinically used plans for Group 1, but yielded plans of comparable target coverage to the clinically used plans for Group 2. For the organs at risk, the KBP-generated plans produced lower doses, on average, for every normal-tissue objective except for the maximum dose to 0.1 cc of rectum. The time needed for the KBP-generated plans ranged from 6 to 15 minutes compared to 30 to 150 and 15 to 60 minutes for manual planning in Groups 1 and 2, respectively. KBP is a promising tool to aid in the transition to a new TPS. Our study indicates that high-quality treatment plans could have been generated in the newly implemented TPS more efficiently compared with not using KBP.  Even after 8 months of the clinical use, KBP still showed an increase in plan quality and planning efficiency compared with manual planning.