Search Courses

Journal SAM 44-1A: Correlating the Depth of Compensation to the 3-D Shape of the Breast to Achieve Homogeneous Dose Distribution using the Electronic Tissue Compensation Treatment Technique

Course Details

MDCB Credits: 2.50

ARRT Credits: 0.75

Available Until: 12/31/2020

Non-Member Price: $87.50

Member Price: $50.00

Member PLUS Price: $50.00

Add to My Courses

Once you have exceeded your annual free credit allowance you will be prompted to pay a per-credit fee.

Courses purchased using your credit allowance are non-refundable and need to be completed before their expiration date

View your annual credit allowance here.

Abdulraouf H. Alghufaili, B.Sc. a, Luxshan Shanmugarajah, B.Sc. a, Lalith K. Kumaraswamy, Ph.D. a, b,
a Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263
b Department of Medical Physics, State University of New York at Buffalo, Buffalo, NY 14260

Our study aimed to correlate the overall 3-dimensional (3-D) shape of the breast to the compensation depth to produce a homogeneous dose distribution using the electronic tissue compensation (ECOMP) treatment technique. The study involved creating a number of semioval water phantoms with the diameter of the larger axis representing the breast separation and the shorter axis representing the distance from the chest wall to the apex of the breast. Multiple plans with 2 tangential fields were created for each phantom using different transmission penetration depths (TPDs) to determine the optimum TPD value based on the evaluation of dose uniformity and maximum hot spot. Optimum TPD values from the semioval water phantom plans were plotted on a graph as a function of separation and radius and were used as guidelines to choose the optimum TPD for the breast patient’s cases. A total of 10 patients who had been treated with radiation therapy using ECOMP tangential fields were randomly selected. The separation and the radius of the breast were measured for 3 regions (superior, middle, and inferior) to retrospectively determine the optimum TPD from the graph for each region. These TPD values were then used to plan the breast cases. For all the patients studied, the optimized TPD technique produced a lower average homogeneity index (HI) value of 0.658 than the standard ECOMP technique of 0.856. These results showed that optimized TPD technique produced a more homogeneous dose distribution than the standard ECOMP technique. By measuring the breast size based on breast separation and the chest wall- to-apex distance at different locations along the superior-inferior axis of the breast, the optimum TPD can be determined at each location to provide a homogeneous dose distribution. A module can be created within the planning system to automatically assign the optimum TPD for both tangential fields so uniform fluence maps can be achieved throughout the whole breast volume. This method can serve as a guideline in ECOMP during the treatment planning to obtain a homogeneous dose distribution.